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1. Introduction and Goals.

This project seeks to study the estimation of elastic, damp-
ing, and material parameters in flexible structures. Of particu-
lar interest are problems in the design and estimation of param-
eters in structures made up of systems of coupled beams and
plates, the estimation of parameters in models that may not have
unique solutions, and the estimation and design of various plate
and shell models incorporating, for example, large deformations,
variable thickness, existing curvatures, contact and possibly

friction conditions.

Because of their application as constructional elements, it
seems important to study both the static and dynamic behavior of
beams, plates, and shells, as well as their combinations. Accord-
ingly, this project seeks to study the identification of param-
eters and the design of structures modeled by distributed systems.
Such efforts are fundamental to our ability to simulate and con-
trol their behavior. Our goals are (i) develop and test numerical
algorithms for the estimation of parameters and design of certain
structures composed of connected beams and plates, (ii) develop

theories and test numerical algorithms for the estimation of
parameters in models that may have multiple states, (iii) use the

above theories to consider various models of plates, shells, and
beams with possible nonlinearities, and in cases where feasible
(iv) test algorithms with laboratory data when possible.

An identification or estimation problem seeks to determine
parameters within a mathematical model from observed data. The
central issue is how to utilize the data to determine the desired
parameters within the context of the model. A design problem
views parameters within the problem as controls to be adjusted so

as to produce desired results under certain conditions. Although
these problems are stated differently, a common mathematical opt-

imization formulation may be given to them. Available is a
model equat ion
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(1.1) t(q) u(q) - f

in which the parameters q to be estimated belong to a specified

admissible set gad of a Banach space Q and solutions u - u(q)

belong to a Banach space X of states. The set gad should be

physically meaningful. However, whereas in previous work it has

been a condition that the parameter-to-state mapping is well-

defined as a function from Gad into the state space X we will in
this work allow the possibility of multiple solutions for the

st at e-equat ion.

Available (for the estimation problem) are data z that we

view as belonging to an observation space Z. An approach to

solving the estimation problem is formulated as a minimization

problem:

Find qoU Gad such that

(1.2) J(qoz) - inf{J(q,z): q a Oad}

admissible functions. An example, if sense can be given to it, of
a fit-to-data functional J(q,z) is the so called regularized

output least squares functional

(1.3) J(qz) - llCu(q)-zIli + P IIqIIl

where Z is the observation space (Hilbert space), C is the obser-

vation operator that takes X into Z, and p > 0 is a regulariza-

tion parameter. If there may be multiple solutions to (1.1), care

must be given in the formulation of the fit-to-data functional

such that it is a well-defined functional that is bounded below,

is weakly-lower semicontinuous over Gad with respect to a topology

in which Gad has suitable compactness properties. There are other

approaches to identification but these typically assume the

parameter-to-state mapping is well-defined and we refer the reader

to (1] for discussions. Issues of interest for (1.1)-(1.2)

include the proper formulation, regularity properties of solutions

of (1.2), approximation, stability with respect to the data, and

uniqueness or identifiability.

The minimization problem (1.2) may also be viewed as design

problem where z represents a target function that we wish to reach

by choosing a suitable parameter q. Certainly, it makes sense from

a design point of view to impose as a condition of the design
problem that the mapping q '-4 u(q) is well-defined, although one
does not have to. Design problems seem to be less data oriented
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than estimation problems since one can often exercise more control

over the formulation. In estimation problems one is limited by

the ability to measure the state. The data are not always in the

most desirable form. Indeed this is one of the first lessons that

one learns attempting to use experimental data.

If one expects to use estimation techniques to identify

parameters from measurements, then one must first decide upon the

a mathematical model (1.1). Hence, one must decide whether the

mathematical model is appropriate for the physical system being

observed. The mathematical model embodies the pertinent princi-

ples and assumptions based on physics and continuum mechanics.

Certainly, one must be cautious about using models to fit data

that do not satisfy the assumptions upon which those models are

derived. It is always desirable to validate in some way the model

in question. For example, comparing spectral data predicted by

the model with spectral data observed in the laboratory provides a

reasonable step in model comparison.

Having proposed the mathematical model, one must address how

to use the data within the framework it imposes for the purpose of

estimation and mode validation. The data for systems of interest

in this project are obtained as "pointwise" measurements of

deformation or strain in the static case or acceleration or vel-

ocity or their Fourier transforms at points in the dynamic case.

These data should be in a form consistent with the mathematical

model having the proper units, etc. The mathematical analysis of

identification problems such as (1.1)-(1.2) gives information on

how best to formulate estimation problems to use these data.

In the following we indicate some of the results we have

obtained during the last year. In Section 2 we discuss the

estimation of elastic parameters in dynamic von Karman plate

models. In Section 3 we report on our work with Prof. D. L.

Russell on the modeling and spectral identification for so called

narrow plate models that should be useful in modeling wings, fan

blades, and corrigated structures. Finally, in Section 4 we

indicate our work on the modeling and estimation of parameters in

dynamic models of coupled-beam systems.

2. Estimation of elastic parameters in a dynamic nonlinear plate

model.

During the funded period another ther area of investigation
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has been the estimation of parameters in static and dynamic

versions of plate models that allow large deformations. For the

dynamic problems we have considered the von Karman and Morozov

models. It is well-known that global solutions of the von Karman

equations are, in general, nonunique E23 although local uniqueness

of classical solutions for certain cases has been demonstrated in

C3,43. In order to give a mathematical formulation of the param-

eter identification problem for either the static or dynamic von

Karman equations, it is necessary to study the estimation of

parameters for systems that may not have well-defined parameter-

to-state mappings. We thus consider a theory for the estimation

of parameters for set-valued parameter-to-state mappings.

We distinguish between two cases static and dynamic. For the

static problem it is apparent the the Galerkin systems may not

have unique solutions. Our approach is to introduce model error

equations. See E83 and the description of the model error method

in our original proposal. One advantage that we have discovered

with the model error method in the static case is that we may give

formulations to avoid having to calculate the adjoint completely

and may be able to compute the derivatives of the fit-to-data

functional directly from the state solutions. This obviously can

lead to significant computational savings. Alternatively, for the

static case we may seek conditions that imply that the

parameter-to-state mapping is well-defined. In E9] this approach

is taken that is based on the contraction mapping principle for

existence as opposed to the Schauder fixed point principle E23.

In the dynamic case we can take advantage of fact that the

Galerkin system forms a system of ordinary differential equations

for which we may obtain the existence of unique solutions. Our

approach is first to formulate and analyze the parameter identi-

fication problem for the von Karman problem using an existence

theory for set-valued parameter-to-state mappings. A formulation

is given that utilizes the weak* compactness of the solution set

for admissible parameters. There are complicating technical

factors, however, that imply different convergence results

E10,113. We show existence of a solution to the output-least-

squares estimation problem. Further, we obtain certain weak

stability results and convergence properties for the estimation

problems of associated Galerkin systems. Next we use the fact that

the Galerkin system possesses a parameter-to-state mapping that
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is well-defined to pose well-defined output-least-squares estima-
tion problems. We then determine regularity and approximation
results for the optimal estimators of the Galerkin problems and
use them to prove stability and convergence results for the
estimation problems for which the Galerkin systems are the

underlying systems.

We give the estimation problem for the Galerkin problem and
report the results of several numerical experiments. The results
of other numerical studies as well as the theoretical development
are reported in references E103 and C113. We recall the von

Karman system

(2.1)(i) utt + & (a & u) + a [B(u,u),uj - f in 0

with initial conditions

(2.1)(ii) u(O) = u0
ut(O) = u1

and boundary conditions

(2.1)(iii) u = 0 on ag x (0,T)

where

(2.1)(iv) &2 B(u,v) - Cu,v]

with clamped boundary conditions. Let {TkO k=l,...,N) be linearly
independent subset of functions in V and ({k: k=l,...,M} be a

linearly independent subset of functions in 0. We denote by VN =

span('Pk: k-l,...,N) and QM = span(*ki k=l,...,M). We set uN=

N M M
k-ik(t) I9k and a = ila. i Defining the matrices

(GO)ij = ,f 'i'j dx and (G2 ) ij = I ' j i dx

(9k)ij - r k & 4P a 4 j dx for k-1l,..PM

and

(Hk) ij - ['fi, 4Pj] 4Pk dx for k-I1,...,N,

we set

H(c,d) = [c* Ak d ] - [d* Hk c ] 14(d) c

Finally, we define the N x N matrix



M Gk6(a) - kE ak
k1l~

The following semi-discrete system is obtained

Go ctt + G(a) c + a H(c,d) - f

(2.2) G2 d = H(c,c)

G c(O) - O

Go ct(O) - •I

We use the following difference equations for a time approxi-

mat ion

ci+1 - 2 ci + c-1i + G(a) ci+l + 2 Ci + ci_1  +

+ a H(civdi) = fi

where h denotes the time difference and the subscript i indicates

the time ti - i * h. Thus, the following sequence is generated

Go co = ft

Go cI = 20 + h -1

G2 di = H(ci, c i )

(Go + 4)2 G(a)) ci+1 - 2 ( 6O - z 3 G(a)) ci -

- (Go + (h)2 G(a)) ci 1 + h 2 ( fi- £ H(ci,di))

The derivative system is obtained by formally differen-

tiating the equations in (2.1) with respect to a 9 for 9 =

1,...,M. Thus, we see that the partial derivative of c and with

respect to ap, D 9c and Dpd, satisfy the system

So (Dec)'' + (G(a) + c W(d)) (Dec) +

+ a 14(c) D d - G Q((S c' + c)

(2.3) 62 (Dgd) -2 14(c) (Dgc)

with initial conditions given by

(D c)(O) - (D c)'(O) - 0

To specify the fit-to-data functional, we define the MxM

matrix G* by

(G*) ij - (Wi,''j)V

for i,j - 1,...,M, the N-vector valued function t '-4 c(t) by
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•i~) "(fil Z)H

for i=1,...,N, and the real valued function

cz(t) f Jz 2 (x,t) dx.

With these definitions the fit-to-data functional becomes

(2.4) J(a) = T(c*(t) Go c(t) - 2 c*(t) c(t) + cz(t)) dt +

+ p a* GOf a.

Thus, J is a mapping from 01 into R. We may calculate the Frechet

partial derivative with respect to aq to obtain

DgJ(a) = 2 c ( Go c(t) - C(t))* (D0c)(t) dt + 2 P (a* G*)

where Doc is the solution of (2.3).

To solve the estimation problem, we attempt to minimize the

functional J. Our approach is to use a steepest descent method to

obtain a-vectors that decrease the size of J(.). We present the

results of several numerical experiments. Our computations are

conducted for S2- (0,1) x (0,1) on which we specify a mesh ob-

tained from uniform meshes on (0,1) &1 with 8 subintervals and

&2 with 3 subintervals. The basis functions (TOi}N. are obtained

as tensor products of cubic B-splines over the mesh &I that are

adjusted to satisfy the clamped essential boundary conditions.

Hence, for our examples, N = 49. On the other hand for the

approximation of the parameter, we use cubic B-spline over the

mesh A2 with no restriction on the boundary. The basis functions

M{*i}M.1 are obtaihed as tensor products of these functions. Hence,

M = 36.

We consider the following test problems. Let a - 0.1. Defin-

ing the function

UT(x) - 16 x2 (1 - x)2

we specify the deformations as

utst(xy,t) - uT(X)*uT(Y)*cos(t) in 2 x (0,T).

Hence, the initial conditions for our examples are given by

u 0 (xy) -uT(x) * uT(y) in Q

and
ul(x,y) - 0 in 2.



To carryout various experiments to recover the coefficient a, we

specify a particular coefficient aotst, then we generate the

resulting force vector by using the weak form of the equations

(2.1) with basis functions '9j replacing If. Thus, from the data

utst as an observation and f as an assumed known force, we wish to

recover the coefficient a.

We give the results of several experiments. In all the

examples we take the

initial guess for aO(x,y) = 0.5625.

In the following we give results In terms of the relative L2

errors for a 0 at a particular iteration that are calculated as

follows

(S2 (aocalc - aotst) 2 dx dy )1/2

Relative L2 error -
laotst IL2 (S2)

Examole 1.

aotst(x,y) - 1.0 + 0.25*cos(2nx)*cos(2my)

iteration Relative L2 error
0 0.462

1 0,*299
5 0.143
1 9 .08945 0 ,09684
35 0,00428

Examole 2.

aotst(x,y) = 1 + X2 : V2

iterati Relative L 2 error
0 0.610
1 02.410
5 0.213
10 9.1 41
15 0,o.0987
35 O. 0399

EXmp*3.
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P:5. xt 0.5 and y 10.5
aotsto 1 otherwise

iseraton Relative L2 error
0 o. 550
1 0.3§3

S0.,180
10 0.112
15 0.0692
35 0.0323

If data are avalable as a time series, we wish to use data at

each time step to estimate the coefficient "a" as the system is

evolving in time. That is, at each time step new data is available

to use to estimate a. Thus, as the von Karman system is being

solved iteratively, we seek to estimate a at the current step with

the data using the new information. Similar methods are used in

meteorology to incorporate measurements into the solutions calcu-

lated by meteorological models and are refered to as forward

assimilation techniques. We apply these methods to estimation

problems for the case of the von Karman equations.

Specifically we consider the time approximation with a step

of lengh h

utt -4 (uk+1 - 2 uk + uk.l)/h2

and introduce an error function w - w(a,u) such that

(2.5)(i) L w = uk+1 - 2 uk + ukI +

+ h 2 (& (a & uk) + a EB(Uk,uk),uk] - fk)in 0

with initial conditions

(2.5) (ii) uCO) -

uI =h u 1 + u 0

and boundary conditions

Uk = &k 0 on ag x (0,T)

where B(uv) a H0(M) is the solution of the boundary value

problem

&2 B(uv) - ru,v].

We give two approaches to the problem that we consider. The

first is to replace the term
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( Ca & uk) by A ( a & Uk+1),

set w 0 0, and consider the elliptic problem

Uk+l+ h 2 (& (a & uk+1 ) - 2 uk - uk_1- g h 2 (rB(uk,uk),uk] -f)

for the estimation of the coefficient a. This approach would take

advantage of the existence and uniqueness theory of local solu-

tions. A second formulation is weaker in the sense that we chose,

for example, the operator L such that L - 42 with the error func-

tion w satisfying the boundary conditions

w = '- 0.

In either case given data zk at time t = kh with k 1 I, we

look for an output-least-squares solution to the estimation prob-

lem. In the first case we consider the functional

J(a) = lluk+l(a) - Zk+lll• + p 1la, 2

H (.Q)
where the space Z is the observation space, for example, L2 (Q).

In the second case we consider the functional

J(a,u;K) - llu - zk+1ltl + P 1all,2(Q) + K 1& w(a,u)112 2

where K is taken as a penalty to force the error w(a,u) = 0 at

time t = (k+l)h. Thus, a is estimated at each time step. It would
seem natural to initialize the minimization iteration at the

current time step using the estimated coefficient from the
previous time step. As information becomes available, we then

refine the estimate of a by minimizing the fit-to-data functional.

By utilizing the information in this way we may obtain

estimation algorithms that are faster than those using the entire
history for matching. Moreover, this approach lends itself

naturally to adaptive estimation of parameters. Such adaptive

estimation would be appropriate for on-line identification

necessary in the implementation of feed-back control strategies.

3. Narrow plate models.

In work with Professor D. L. Russell C5,63, we have been
investigating models of structural elements that are of an
intermediate character. Specifically, not only do they have a
small thickness but their width is small when compared to their
length as well. Such elements arise frequently in aircraft wings.
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propellers, and fans blades, for example. We give the essentials

of the formulation.

Let a region I

p - ((x,y,z): 0 1 x I L, k 1 (x) I y I k2(x),

- . h(x,y) I z I . h(x,y))

be occupied by an elastic isotropic body satisfying the small

deformation gradient assumption. We assume that the body is

clamped along the line x = z - 0. kl(x) j y I k 2 (x). We also take

the functions kl(') and k2 (') to be of the form

kl(x) - p x - k(x) and k 2 (x) = p x + k(x)

where k is a piecewise continuous function. For our model we

specify the displacement relations as a particular form of the

Mindlin-Timoshenko relations where u, v, and w are the displace-

ments in the x, y, and z directions, respectively.

u(x,y,z,t) = z Cf(x,t) + (y-Px) 'f(x,t)]

v(x,y,z,t) = z C[(x,t) + (y-px) *(x,t)]

w(x,y,z,t) = Z(x,t) + (y-Px) F(x,t) + (y-0x) 2 Q(x,t)

Simpler models that may be useful are obtained by omitting the

quadratic term in (y-px) in the expression for w and the linear

terms in u and v. These displacement assumptions give rise to the

system in which h and k are constants and D is the flexural

rigidity and 6 is the twisting modulus.

Pkh 3 8 ff + Gkh (N + a Z - p 8) - (2kD a IF) f

(3.1) 2 + Gkh (O + a:) - -( & kD D f 2

2 pkh 22 Z - (Gkh(f + (9 Z -pa)) =f3
•25ý Wh •€

PhIy ?2 a + Gkh(t+ + - p(+ Z - P a))- & (hIy f4

These equations are accompanied with clamped boundary conditions

at x - 0 and free conditions at x = L. Clearly, by including

additional terms, we can accomodate more general motions.

Further, by considering a family of coupled systems of the form

(3.1), it is possible to model corrigated and fan-like struc-

tures.

There are several advantages in considering the single space

dimensional model (3.1) in place of two dimensional plate models.
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The first is the dramatic computational speedup and savings in
storage that result from replacing a 2 dimensional problem with a

1 dimensional system. Secondly, the narrow plate model incorpor-

ates the boundary behavior into the coefficients of the equations.

In so doing the regularity of the solutions may be deduced much
easier than in the 2-D model. The 2-D model regularity is deter-

mined by smoothness of the boundary where in the 1-D model the
coefficients are obtained by integrating the functions that define

the boundary.

This regularity allows us to obtain a very nice convergence

theory for finite element approximations, in fact obtaining rate
of convergence. The regularity theory for the 2-D model is much

more complicated. While we can obtain convergence, a rate is

difficult to obtain except for smooth boundaries. Such results are

important since we plan to study the relation between the cross-

sectional shape of tI_ narrow plate and its the natural frequen-

cies and mode shaFas. Incidently, results indicate that torsional

frequency information is critical for determining the shade of the

plate so that it is important to have a theory that accounts for

more than beam-type bending.

We are also considering the use of spectral data for the

identification of material parameters in narrow plate models [53.

Accordingly, we have developed a theory using a weighted least

squares fit-to-data criterion that supports algorithms for the

estimation of such parameters. Our theory applies whether or not

the multiplicity of natural frequencies is known. Moreover, we

are determining the approximation properties and stability with
respect to perturbations in the spectral data. Further, we are

testing our algorithm with laboratory data obtained from a

particular sample for which the assumptions of the

narrow plate model hold. The goal is to identify the shape of the

sample. We have obtained encouraging initial results that are

consistent with expected qualitative results predicted by the
implicit function theorem. Investigations in this direction are

continuing.

4. A system of connected beams.
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During this project we have been conducting an investigation

concerning the estimation of coefficients or the design of beam
systems E73. In particular, we have recently been studying the

following simple problem. Suppose two beams, 1 and 2, of length

9, and 92, respectively, are joined at an angle o to one another.

The other end of beam 1 is clamped and the remaining end of beam 2

is free. In response to a force that is perpendicular to the

plane containing the beams are deformations wI and w2 of beams 1

and 2, respectively, and a rotation e of twist along beam 1. The

key point for the model we have been investigating is that the

angle between the beams remains fixed. For the dynamic problem

with m = 900, we study the following system of hyperbolic

equations with coupled boundary conditions in which x and y

represent local coordinates for beams 1 and 2 respectively.

(a wxx)xx M f in (0, 91)

(4.1)(i) -(b ex)x - g in (0, 91)

(c w2yy)yy = f 2 in (0, 92)

with boundary conditions

Wl(O) M WIx(O) = 0

8(0) 0
at the clamped end,

(4.1)(ii) Wlxx(RI) = 0

(4.1)(iii) w1 (9 1 ) = w2 (0)

(4.1)(iv) 9(9 1 ) = w2y(O)

(4.1)(v) (b ex )(R 1 ) - (c w2yy)(O)

(4.1)(vi) (a wlxx)X(R1) - (c w2yy)y(O)

at the junction, and

W2yy(@2) = (c w2yy)y(92) = 0

at the free end. Equations (4.1) are associated with a

potential energy functional

(4.2) P(wl, e, w2 ) = Ca(x) W (xx() + b(x) 9x(x)3 dx +

+ 92 c(y) w2yy(y) dy - 2 so Cfl(x) w1 (x) + g(x) 9(x)] dx-

- 2 fo0 2 f 2 (y) w2 (y) dy.

A unique solution of the initial boundary value problem (4.1)

may be shown to exist using, for example, standard Galerkin
arguments with the Hilbert space
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V - {v - (wlGw 2 ) a H2 (0, 1) x HI(0, 91) x H2 (0, 92)
Wl(O) = Wix(O) 0 O, e(0) = 0,

9(21) - w2y(O), Wl(Q 1 ) = w2(O)}.
To solve (4.1) numerically with a comforming method, the

space of basis functions should satisfy the essential boundary
conditions given in the definition of the space V. However, it is
difficult to enforce the essential boundary conditions at the
junction on the basis elements that are used to construct the
finite dimensional approximating space, as one does, for example.
with the clamped boundary conditions. We are motivated by a
desire to develop and study methods that can be generalized to
more complicated structures. Hence, our approach is to use basis
functions that are nonconforming at the junction in the sense
that they do not satisfy the essential boundary conditions at the
junction. For a static problem
these conditions are enforced as constraints on the
discrete version of the problem to minimize the potential energy
functional and a penalty method is used to impose the conditions.
For the dynamic case we consider we consider an initial boundary
value problem having a potential energy functional that is
obtained through a penalization of the functional (4.2).

To give a penalization formulation we define by W the space

W = {v = (wl,9,w2 ) a H2 (o, ) x HI(0, 01) x H2 (0, Q2)
w1 (0) = wix(O) = 0, 9(0) 0).

and the mapping G: V 1-+ R2 by

G(w) = [1(1) - w2 (0)1
-- L 1 ) - w2 y (O)J

In order to obtain convergence results, apparently it is useful to
define approximating problems in terms of a penalized
potential energy functional to incorporate the constraint at the
junction. For example, one such functional is given by

k:(u) = P(u) + K IG(u)12

where = 6 (0,1). We point out that apparently regularization is
not necessary in this case as in the static case E73.

We are currently considering estimation problems for this
structure based on the potential energy functional 0K(--. In this
work we formulate a sequence of estimation problems where in each
case the underlying system is one obtained by the penalizing the
condition at the junction thereby absorbing the junction condition
into a regularized functional. Hence, a sequence of estimation
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problems is defined on the regularized approximating systems

obtained from the penalty approximating scheme.
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